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The Heat Equation
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u(a, t) = ga(t)

u(b, t) = gb(t)

u(x, 0) = u0(x)

1D Equation 2D Equation

Boundary and Initial Conditions in 1D

Will concentrate on the 1D equation for this presentation
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Discretization in Space/Time

Means a quantity less than C Δx2

where C is problem dependent
but not discretization dependent

u(x, t) Exact solution

Approximate solution in x and t
u

n
i ⇡ u(xi, t

n)

Common discretization of second derivative
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How to Get the Approximation
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Taylor Series

Add these, subtract 2u(x), and divide by Δx2
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Discretize in Time
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Explicit Euler (1st Order)

Implicit Euler (1st Order)

Crank-Nicholson (2nd Order)
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Discretize in Time

• “Method of Lines” approach
• Discretized in all variables except time
• Then discretize in time

• Local truncation error for time integration: O(Δtp+1)
• Error from one time step

• Global error for time integration: O(Δtp)
• Error after all time steps
• Order reduces by 1 by accumulating all time step errors
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Two Things Always Needed

• Stability
• Consistency

Lax Equivalence Theorem for Linear PDEs

Convergence = Stable + Consistent
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What is Consistent?

• Discretization converges to original PDE

• Example with implicit/explicit Euler steps

u1
i = u(xi, t

1) +O(�x2) +O(�t2)
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Importance of Stability

Initial Condition: u0(x) = sin(x)
Boundary Conditions: u(0) = u(π) = 0

Implicit Euler
Large Δt

4x1057

Explicit Euler
Small Δt

Explicit Euler
Large Δt
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Importance of Stability

• For stability
• Explicit time integration: always subject to time step restriction

• Typically the time step restriction is based on the size of Δx
• Implicit time integration:

• Sometimes no time step restriction
• Usually less restriction on time step

• One technique to calculate time step restriction is Von Neumann Analysis

• Remember: accuracy requires a time step restriction as well
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Von Neumann Analysis

• Steps
• Apply Discrete Fourier Transform at time step n
• Apply time step to one Fourier mode
• See what conditions cause increase in size of Fourier mode

• Stability requires all initial conditions are damped
• Keeps discretization and round off errors from increasing exponentially
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Von Neumann Analysis
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Step 1: Apply Discrete Fourier Transform at time step n
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Von Neumann Analysis

Step 2: Apply time step to one Fourier mode 
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Amplification Factor
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Von Neumann Analysis

Step 3: See what conditions cause increase in size of Fourier mode

Want value in brackets < 1
Maximum absolute value in brackets occurs for k = N/2

�t <

1

2
�x

2

����1� 4
�t
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���� < 1

Leads to the stability requirement
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Implicit Methods

• Von Neumann analysis for implicit Euler and Crank-Nicholson
• No time step restriction for stability

• But you have to solve a linear system
• Takes more time to solve than explicit method



Los Alamos National Laboratory

|   16

Implicit Methods

0

BBBBB@

1 + 2r �r
�r 1 + 2r �r

. . .
. . .

. . .
�r 1 + 2r �r

�r 1 + 2r

1

CCCCCA
un+1 = bn

Linear System for implicit Euler or Crank-Nicholson
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Implicit Methods

• Nice properties of linear system
• Strictly diagonally dominant

• Gershgorin circle theorem implies system is positive definite
• Symmetric system

• Implies system is diagonalizable (basis of eigenvectors)
• All eigenvalues are real

• If Δt is approximately Δx, then r is very big
• As Δx goes to zero, system approaches weakly diagonally dominant
• Harder for many iterative methods to converge
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Solving Linear Systems

• Dense linear algebra: O(N3) flops
• Gaussian Elimination (Lapack, Scalapack)

• Can exploit banded nature of linear system
• Can exploit sparse nature of linear system (SuperLU)

• Sparse linear algebra: O(I N2) flops      I = Iterations
• Classical: Jacobi, Gauss-Seidel, SOR (Usually hand coded)
• Krylov: CG, GMRES, etc (Petsc, Trilinos)
• Multigrid, Algebraic Multigrid (Hypre, Petsc, Trilinos)
• Never stores the zeros of the matrix



Los Alamos National Laboratory

|   19

Dense Linear Algebra

• A = LU
• L lower triangular, U upper triangular
• Factorizing takes the most time: O(N3) flops
• Solve Ax = b via LUx = b
• Each triangular solve takes: O(N2) flops
• Can reuse L and U for later solves
• Really use A = PLU (Gaussian elimination with pivoting)

• For symmetric, positive definite: use Cholesky factorization
• A = L LT

• No pivoting needed
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Dense Linear Algebra

• Uses BLAS (Basic Linear Algebra Subroutines)
• Highly optimized: MKL, ACML, cuBLAS, ATLAS, OpenBLAS
• Implements for example: 

• Matrix matrix multiply
• Matrix vector multiply
• Dot product of vectors
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Dense Linear Algebra

• LAPACK and BLAS originally FORTRAN libraries
• CBLAS and LAPACKE for C interface
• Can link to Fortran library from C/C++

• LAPACK library variants
• ScaLAPACK – MPI version
• MAGMA – GPU version
• SuperLU – unsymmetric, sparse systems
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Dense Linear Algebra

• Other classical decompositions
• QR decomposition: A = QR

• Q is an orthogonal matrix
• R is an upper triangular matrix
• Used for least squares problems

• Eigendecomposition
• A = QDQT for symmetric problems
• A = QTQ* for nonsymmetric problems
• Q is orthogonal or hermitian
• D is diagonal, real
• T is triangular
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Classical Sparse Linear Solvers

• Write A = N-M. Solve (N-M)x = b
• Iterate Nxk+1 = Mxk + b
• Converges if and only if ρ(N-1M) < 1 (all eigenvalue magnitudes < 1)

• Jacobi: N is the diagonal of A
• Gauss Seidel: N is the upper or lower triangular part of A

• Easy to code but converges slowly
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Classical Sparse Linear Solvers

(1 + 2r)xi � rxi�1 � rxi+1 = bi

(1 + 2r)xk+1
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i+1 + bi

Linear System

Jacobi Method

Gauss Seidel Method
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Krylov Linear Solvers

• Gets the “best answer” from a Krylov subspace 
K^k(A,b) = {b, Ab, A2b, …, Ak-1b}
• CG (Conjugate Gradient) used for symmetric, positive definite systems

• Three vector recurrence relation
• GMRES (Generalized Minimal Residual) used for nonsymmetric systems

• Must hold all vectors in Krylov space
• Actually use GMRES(m): restart after m steps to reduce memory 

required
• Guaranteed convergence for positive definite systems

• Note: other Krylov spaces are used for some Krylov solvers
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Krylov Linear Solvers

% Matlab version of CG from Wikipedia
function [x] = conjgrad(A, b, x)

r = b - A * x; 
p = r; 
rsold = r' * r; 
for i = 1:length(b) 

Ap = A * p; 
alpha = rsold / (p' * Ap); 
x = x + alpha * p; 
r = r - alpha * Ap; 
rsnew = r' * r; 
if sqrt(rsnew) < 1e-10 

break; 
end 
p = r + (rsnew / rsold) * p; 
rsold = rsnew; 

end 
end

Notice only 3 extra vectors 
of memory required

Also need to perform
dot products.  Can 
hurt parallel performance
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Multigrid Linear Solver

• Uses the classical solvers
• These solvers converge quickly for certain discrete Fourier modes
• When grid size changes, other Fourier modes converge quickly
• Solves problem on grid sizes: h, 2h, 4h, 8h, etc.
• Generally fastest solver for diffusion type equations
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Iterative Solvers

• Many iterative solvers need a preconditioner
• Ax = b
• PAx = Pb (Left preconditioner)
• PA should require less iterations
• P should be easily invertible
• There are also right and symmetric preconditioners
• Very problem dependent
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Other Important Linear Solver Topics

• Norm of vector ||v||

• Induced norm of matrix (max matrix stretches a vector)

||v||1 = |v1|+ |v2|+ . . .+ |vn|

||v||2 =
�
v21 + v22 + . . .+ v2n

�1/2

||v||1 = max{|v1|, |v2|, . . . , |vn|}

||A|| = max

||v||=1
||Av||
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Other Important Linear Solver Topics

• Condition number of a matrix

• If you solve Ax = b+e, the relative error in solution compared to the 
relative error in RHS is

• This is for exact arithmetic
• This shows the error in solution given error in data

(A) = ||A�1|| · ||A||

||A�1e||
||A�1b||  (A)

||e||
||b||
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Ensuring Correctness

• You must run tests to ensure a correct answer and correct 
implementation

• Verification Tests: Make sure you are actually solving the heat 
equation
• Use known analytical solutions: sin(x) e-t

• Method of manufactured solution: used when there is a known source.
• Make up a solution and determine the source.
• Put that source into your solver.
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Ensuring Correctness

• Convergence Tests: Make sure numerical implementation is correct
• It is common to code incorrectly and get first order convergence of a 

higher order method

• Unit Tests: Test code in every file
• Very useful for large projects
• When you find a bug, add a test to reproduce it
• Makes pinpointing errors easier
• Some projects require that every branch in code is tested
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The End


